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A B S T R A C T

Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a
challenging but very important task. Frequently, some of the groundwater types are related to different in-
filtration and/or contamination sources associated with various geochemical signatures and origins. The char-
acterization of groundwater mixing processes typically requires solving complex inverse models representing
groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available
site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal
distribution of the observed geochemical types. Numerous different geochemical constituents and processes may
need to be simulated in these models which further complicates the analyses. In this paper, we propose a new
contaminant source identification approach that performs decomposition of the observation mixtures based on
Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom
semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown
number of groundwater types and (b) the original geochemical concentration of the contaminant sources from
measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is
tested on synthetic and real-world site data. The NMFk algorithm works with geochemical data represented in
the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard
normalized stable isotope ratios).

1. Introduction

For several decades, one of the most important research and real-
world applications in the hydrogeological sciences has been related to
aquifer contamination (Fetter and Fetter, 1999; Gelhar, 1993; Vengosh
et al., 2014). The work has been driven by substantial scientific and
engineering challenges associated with prediction and remediation of
contaminant plumes in natural environment. Most of these challenges
are due to uncertainties associated with contaminant sources. For ex-
ample, the number of contaminant sources, their location and geo-
chemical signatures are frequently unknown.

Typically, water in an aquifer is a mixture of different groundwater
types with different origins and geochemical signatures (Deutsch and
Siegel, 1997). For example, groundwater might be originating from
different recharge sources with contrasting geochemical properties.
Also groundwater may have been flowing through different rock types
which may have altered the composition by means of geochemical re-
actions and ion exchanges. Furthermore, some of the groundwater re-
charge sources might be associated with contamination sources with
different geochemical signatures. Data about the groundwater mixtures
are typically collected at multiple sampling locations over time where

the measurement data are also associated with uncertainties and mea-
surement errors. Identification of the original groundwater types re-
presenting geochemical mixtures observed in a aquifer is a challenging
but very important task (Wagner, 1992; Böhlke and Denver, 1995;
Lapworth et al., 2012). This task is typically performed using complex
inverse models representing groundwater mixing processes in the
aquifer, where the model is calibrated against the available observation
data characterizing the spatial and temporal distribution of the ob-
served geochemical data (Wagner, 1992; Neupauer et al., 2000;
Atmadja and Bagtzoglou, 2001; Michalak and Kitanidis, 2004; Guan
et al., 2006; Mamonov and Tsai, 2013; Hamdi and Mahfoudhi, 2013;
Murray-Bruce and Dragotti, 2014; Borukhov and Zayats, 2015). Nu-
merous different geochemical constituents may need to be simulated in
these models which further complicates the analyses.

Contemporary analyses of groundwater contamination sources are
also performed implementing various multivariate statistical and ma-
chine learning techniques (Chan and Huang, 2003; Rasekh and
Brumbelow, 2012). Thus, variations in chemical compositions and
evolution of groundwater composition have been studied by methods
used to describe variability among correlated variables (Knudson et al.,
1977; Helena et al., 2000) (such as, Factor Analysis, Harman, 1976; and

https://doi.org/10.1016/j.jconhyd.2017.11.002
Received 19 April 2017; Received in revised form 28 October 2017; Accepted 3 November 2017

* Corresponding author.

Journal of Contaminant Hydrology xxx (xxxx) xxx–xxx

0169-7722/ Published by Elsevier B.V.

Please cite this article as: Vesselinov, V., Journal of Contaminant Hydrology (2017), https://doi.org/10.1016/j.jconhyd.2017.11.002

http://www.sciencedirect.com/science/journal/01697722
https://www.elsevier.com/locate/jconhyd
https://doi.org/10.1016/j.jconhyd.2017.11.002
https://doi.org/10.1016/j.jconhyd.2017.11.002
https://doi.org/10.1016/j.jconhyd.2017.11.002


Principle Component Analysis, Jolliffe, 2002), as well as by un-
supervised machine learning methods used to characterize or separate
two or more classes of objects (Shrestha and Kazama, 2007; Tariq et al.,
2008) (such as, Discriminant Analysis, Scholkopft and Mullert, 1999;
and Clustering Analysis, Diday and Simon, 1980). Determination of the
average regional concentrations of heavy metals (based on surveys of
soil contamination) has been also investigated by Principle Component
Analysis and Cluster Analysis (Facchinelli et al., 2001), combined with
a geostatistical method (Chiles and Delfiner, 2009) used to construct
regional distribution maps for comparison with regional databases.
Various supervised machine learning techniques, such as, Artificial
Neural Networks, Yegnanarayana (2009), Support Vector Machines,
Drucker et al. (1999), Locally Weighted Projection Regression,
Vijayakumar and Schaal (2000), and Relevance Vector Machines,
Tipping (2001), etc., have been also utilized to build surrogates models
(based on observational data) for substitution of the much more com-
plex and time-consuming physical models used to simulate the con-
tamination levels. Such surrogate models have been used to predict
contaminant levels in regional groundwater sites (Khalil et al., 2005).
The relationship among different chemical pollutants retrieved from in
situ measurements of underground and surface water have been in-
vestigated by an algorithm for quasi-optimal learning, Cervone et al.
(2010) that explores a methodology for symbolic machine learning
classification. By this method it has been shown, for example, that if
one type of contaminant is dissolved in the water table, it has to be
expected that other chemicals are also present (Manca and Cervone,
2013).

In this paper, we utilize a new hybrid approach, which we call
NMFk, for identification of contaminant sources in an aquifer. NMFk
utilizes a Blind Source Separation (BSS) technique (Belouchrani et al.,
1997), based on Non-Negative Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999), combined with a custom made semi-
supervised k-means clustering algorithm (Alexandrov and Vesselinov,
2014), to unmix the geochemical signatures in the observations and
identify the contaminant sources.

Using synthetic and real-world site data, we demonstrate that NMFk
is capable of accurately determining the unknown number of con-
taminant sources from observation samples of their mixtures, without
any additional information. The NMFk methodology is coded in Julia
(Bezanson et al., 2012) and the code is available upon request. The
NMFk algorithm works with geochemical data represented in the form
of concentrations, ratios (of two constituents, for example, isotope ra-
tios), and delta notations (standard normalized stable isotope ratios).

Frequently, at the contamination sites, the groundwater in the
aquifer is a mixture of waters with different origins (sources) that are
commingled in the aquifer; several of these groundwater recharge
sources might include contaminants. Typically, all these sources will
have different geochemical signatures due to differences in their origins
and flowpaths through the subsurface before infiltrating in the aquifer.
The identification of the contamination/infiltration sources causing the
observed geochemical concentrations in the aquifer can be very chal-
lenging at sites where complex physical and chemical processes occur.

Source identification can be complicated because (1) some of these
sources may have similar geochemical signatures, (2) some of the
sources may geochemically interfere with each other, and (3) ground-
water transport through the subsurface (from the entry point at the
ground surface to the observation point in the aquifer) may be impacted
by various physical and chemical processes (e.g., diffusion, dispersion,
sorption, retardation, precipitation, etc. and precipitation). To address
all these issues, the source characterization is often carried out by ca-
librating a numerical model that simulates these complexities against
the observed geochemical data. Here, we apply an alternative approach
based on a novel model-free machine learning algorithm for Blind
Source Separation (BSS).

2. Blind Source Separation (BSS)

The main goal of the paper is to present a novel application of the
BSS methodology based on NMFk algorithm presented in Alexandrov
and Vesselinov (2014). Additionally, substantial changes and exten-
sions of the original NMFk algorithm are reported in order for NMFk to
be applicable for contaminant source identification based on geo-
chemical observations as discussed below.

We assume that the geochemical observations are taken at several
discrete detectors (sampling points; typically monitoring wells) dis-
persed in space. The algorithm does not require the data to account for
transients. In the case of transient data, NMFk can be applied con-
secutively to representative time snapshots, which will account for
changes and evolution of the mixing ratios of the detected groundwater
types.

When there are multiple contamination sources in the aquifer each
detector registers a mixture of contamination fields originating from
different sources (release locations). Our objective is to identify the
unknown number of original contamination sources, which necessitates
decomposing the recorded mixtures to their original components.

Consistent with the BSS methodology (Belouchrani et al., 1997), the
contaminant source identification problem addressed here can be for-
mulated as following:

= × +V W H ϵ, (1)

where V is a matrix (V ∈ Mn,m(R)) of the known observation data re-
presenting m geochemical constituents detected at a set of n detectors
(monitoring wells). The V matrix does not need to be a full matrix and
there can be empty entries, where not all the geochemical constituents
are observed at all the wells. W is an unknown source mixing matrix (W
∈ Mn,k(R)) representing the mixing coefficients of k unknown original
groundwater types at each of the n observation points. Note that in this
formulation, the sum of the mixing coefficients for each observation
point should add to one ∑ ==( )W i1, for each wellj

k
i j1 , and all the

mixing coefficient should be between 0 and 1 (i.e., 0< =Wi,j< =1).
These requirements come from the problem setup; the groundwater
concentrations at each well are expected to be defined by mixing of all
the sources, and there are no expectations to have negative source
contributions. H is the unknown source matrix (H ∈ Md,m(R)) re-
presenting the m geochemical concentrations for each k unknown ori-
ginal sources. The matrix elements of V, W and H are expected to be
positive (which is consistent with the analyzed problem; concentrations
cannot be negative). ϵ denotes presence of unknown noise or unbiased
errors in the measurements (ϵ ∈ Vm(ℝ)).

If there are transients in the observed data, the BSS problem for-
mulated above can be solved for a sequence of temporally discretized
snapshots. In this case, the matrices V, W and H will be time dependent.
In the discrete case, the BSS analyses will solve for k, Ht andWt based on
a series of inputs Vt, where t=1,…,T, and T is number discretized
moments in time, at which the signals are recorded at the detectors.
This is also consistent with the data acquisition strategies typically used
at an actual contamination site where the geochemical data are col-
lected on annual or quarterly basis.

The joint analyses of the transients will increase the dimensionality
of the data requiring factorization of tensors not matrices as presented
in Eq. (2) (cf. Cichocki et al., 2009). However, currently, there are no
tensor-based methods that can be applied to solve the multi-dimen-
sional geochemical mixing problems.

Since both factors H and W are unknown (the size k of these ma-
trices is also unknown, because we do not know how many sources have
been mixed in each detector record), the main difficulty in solving a
BSS problem is that it is under-determined.

There are two widely-used approaches to resolve this BSS under-
determination: Independent Component Analysis (ICA), Amari et al.
(1996), Herault and Jutten (1986), and Non-negative Matrix
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Factorization (NMF), Lee and Seung (1999), Paatero and Tapper
(1994). ICA presupposes a statistical independence of the original sig-
nals and thus aims to maximize the non-Gaussian characteristics of the
estimated sources in H. The other approach, NMF, is an unsupervised
learning method, created for parts-based representation, Fischler and
Elschlager (1973) in the field of image recognition, Lee and Seung
(1999), Paatero and Tapper (1994) that was successfully leveraged for
decomposition of mixtures formed by various types of signals (Cichocki
et al., 2009). In contrast to ICA, NMF does not seek statistical in-
dependence or constrain any other statistical properties (i.e., NMF al-
lows the original sources to be correlated); instead, NMF enforces a
non-negativity constraint on the original signals in H and their mixing
components in W. NMF can successfully decompose large sets of non-
negative observations, V, by leveraging the multiplicative update al-
gorithm (Lee and Seung, 1999); however, NMF requires a priori
knowledge of the number of the original sources.

Recently, we reported a methodology, called NMFk (Alexandrov
and Vesselinov, 2014), where the coupling of the original multiplicative
algorithm with a custom semi-supervised clustering enables it to iden-
tify the number of the unknown sources based on the robustness of the
solutions. Here, by imposing additional (to non-negativity) constraints
to the elements of the mixing matrix and applying a nonconvex non-
convex nonlinear minimization algorithm, we extend NMFk to be ap-
plicable for the contaminant source identification based on geochemical
signatures in groundwater samples representative of contamination
sites. The extended NMFk methodology is also applicable for any other
situation where the contributions of the original signals in the observed
mixtures have to add to 1 due to additional physical constraints.

3. Methodology

3.1. NMF algorithm

In a typical NMF problem, the observational data, V, is formed by a
linear mixing of k unknown original signals, H, blended by an also
unknown mixing matrix, W, i.e.,

∑= +
=

V W H ϵ,n m
i

k

n k k m,
1

, ,
(2)

subject to the following constraints:

> > ∀W H n d m0, 0; , , .n d d m, , (3)

Here, ϵ is a vector and denotes presence of possible noise or un-
biased errors in the measurements (also unknown). If the problem is
solved in a temporally discretized framework, the goal of the BSS al-
gorithm is to retrieve the k original signals, H, that have produced n
observational mixtures of these signals, V, recorded at a set of ob-
servation points (sensors). Here, n is the number of the sensors, k is the
number of the unknown signals (sources) observed in the collected data
(V), and m is the number of observed geochemical constituents asso-
ciated at the observation points. The algorithm returns the decom-
position through the mixing matrix Wn,d and source matrix Hd,m with ϵ
being the residual noise. The rows in V correspond to the number of
sensors while the rows of H correspond to the number of sources. In the
NMFusually, usually, the number of sensors has to be greater than the
number of sources. For NMF to work, the problem must be amenable to
a non-negativity constraint on the sources H and mixing matrix W. This
constrain leads to reconstruction of the observations (the rows of matrix
V) as linear combinations of the elements of H andW that cannot cancel
mutually.

The NMF algorithm starts with a random guess for H and W, and
proceeds by minimizing the cost (objective) function, O, which in our
case is the Frobenius norm,

∑ ∑= ∥ − ∥ = ⎛

⎝
⎜ − ⎞

⎠
⎟

=

O V W H V W H1
2

* 1
2F

n m
n m

k

d

n k k m
2

,
,

1
, ,

2

(4)

during each iteration. Minimizing the Frobenius norm (Eq. (4)) with
non-negativity constraints (Eq. (3)) is equivalent to representing the
discrepancies between the observations, V, and the reconstruction, W *
H, as white noise.

Furthermore, to find the contaminant sources (geochemical types)
represented in the observed geochemical mixtures, here we have to
minimize O with the additional constraints,

∑ = ∀
=

W n1; .
k

d

n k
1

,
(5)

It is important to note that because of the constraints in Eq. (5), the
classical multiplicative NMF optimization algorithm (Lee and Seung,
1999) is not applicable. Instead, a non-convex nonlinear optimization
algorithm is needed, and for this purpose we utilized the nonlinear
minimization procedure provided by Julia packages JuMP.jl and
Ipopt.jl. JuMP.jl is a modeling language for mathematical optimization
embedded in Julia (Dunning et al., 2015). It supports a number of open-
source and commercial solvers for a variety of optimization problems.
Here, JuMP.jl is applied for nonlinear programming using Ipopt.jl.
Ipopt (Interior Point OPTimizer) is an open-software package for large-
scale nonlinear optimization (Wächter, 2002; Wächter and Biegler,
2005, 2006). Here, Ipopt is applied to perform non-convex constrained
second-order minimization.

3.2. NMFk algorithm

If we knew the number of sources, the first step described in the
previous section would be all that is needed: from the best solution of
the minimization procedure (with known k) we would extract the de-
sired estimates of the physical parameters, and thus solve the inverse
problem. Unfortunately, the true number of sources is typically un-
known, and thus the number of the sources is an unknown parameter
which we have to identified from the observations. Further, the solu-
tions of Eq. (2), is based on random initial conditions. A naive approach
would be to explore all of the possible solutions applying the nonlinear
minimization described in the previous section for a range of possible
number of sources. Then the solution with the smallest norm will
identify the number of sources, ks. However, this is obviously flawed
approach – — the over-fitting will certainly lead to an over-estimation
of the number of sources: more free parameters will generally lead to a
better fit, irrespective of how close the estimated number of sources is
to the real one.

The classical NMF also requires a priory priori knowledge of the
number of the original sources. Previously, by coupling the NMF with a
custom semi-supervised clustering, we have demonstrated that the
number of the original sources can be estimated based on their ro-
bustness/reproducibility (Alexandrov and Vesselinov, 2014). This ap-
proach was introduced to decompose the largest available dataset of
human cancer genomes (Alexandrov et al., 2013), and then extended
for decomposition of physical signals/transients (Alexandrov and
Vesselinov, 2014).

Specifically, our methodology, called NMFk, explores consecutively
all possible numbers of original sources k ranging from 1 to d (k=1,2,
…,d), and then estimates the accuracy and robustness of large set of
solutions with different number of sources.

In NMFk, the maximum number of explored sources d is user de-
fined and it is not expected to exceed the number of observed geo-
chemical components or the number of observation points (although,
theoretically, the used here minimization algorithm can be applied for
any k>1).

Thus, NMFk performsM sets of simulations, called NMF runs, where
each run is using different number of sources, k=1,2,…,d, with
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random initial conditions. At the end of each NMF run, we get a set ofM
solutions, Uk, where each solution contains two matrices, H W,k

j
k
j, (for k

original sources, and j=1,2,…,M),

= …U H W H W H W([ ; ], [ ; ], , [ ; ]).k k k k k k
M

k
M1 1 2 2 (6)

After that, NMFk leverages a custom semi-supervised clustering to as-
sign each of these M solutions in a given set, Ud, to one of k specific
clusters. This custom semi-supervised method is based on k-means
clustering that keeps the number of solutions in each cluster equal to
the number of NMF runs. For example, for the case with k=2, after the
execution of M=1000 NMF runs (performed with random initial
guesses for the W and H matrix elements), each of the two clusters will
contain 1,000 1000 solutions. Note that we have to enforce the con-
dition that the clusters are with equal number of solutions, since each
NMF simulation contributes equal number of solutions for each source.
During the clustering, the similarity between sources Hi1 and Hi2 is
measured using the cosine distance (also known as cosine similarity)
(Pang-Ning et al., 2006; Alexandrov and Vesselinov, 2014).

The main idea for estimating the unknown number of sources in
NMFk is to use the separation between the clusters as a measure of how
good a particular choice of k is as an accurate estimate of the number of
unknown sources. We estimate the degree of clustering for different
number of sources, and plot it as a function of k, we expect a sharp drop
after we cross the ks value (Alexandrov and Vesselinov, 2014).

To quantify this behavior, after the clustering, we compute the
average silhouette width (Rousseeuw, 1987), S(k), which is a measure
of how well the solutions are clustered for given number of original
sources, k. The average silhouette width of the clusters for the NMFk
solutions for different S(k) values can be applied to evaluate the optimal
number of contaminant sources, ks. In general, S(k) declines as k in-
creases. Theoretically, S(k) varies between 1 and −1. For k=1, S(1)
=1 since there is only one solution. Typically, S(k) declines sharply
after the optimal number of contaminant sources, ks, is reached.

In NMFk, in addition to the robustness, the average reconstruction
error (Eq. (4)) is used to evaluate the accuracy with which the derived
average (cluster) solutions H W[ ; ]k

a
k
a reproduce the observations V. In

general, the solution accuracy increases (while the solution robustness
decreases) with the increase of the number of unknown sources. Hence,
the average silhouette width and Frobenius norm for each of the k
cluster solutions can be used to define the optimal number of con-
taminant sources, ks. Specifically, ks can be select to be equal to the
minimum number of sources that accurately reconstruct the observa-
tions (i.e., the Frobenius norm is less than a given value or hit plateau)
and the clusters of solutions are sufficiently robust (or stable, i.e., the
average silhouette width S is bigger than 0.8).

When some of the source geochemical compositions are very close
to each other or do not demonstrate clear features, it is more useful to
formulate another criteria for the NMFk solution robustness, which is
based on the Akaike Information criterion (AIC) (Akaike, 2011). Spe-
cifically, to compare the NMF models with different number of sources
we calculate for each of them the AIC value. To calculate AIC, we take
from each of the sets of solutions with different number of sources, Uk,
the best NMF solution, and use the corresponding Frobenius norm, O(k),
in the AIC formula:

⎜ ⎟= − = + − + ⎛
⎝

⎞
⎠

AIC N L k n m n nm O
nm

2 2 ln( ) 2( ( ) ) ln .
k( )

(7)

Here, the number of adjustable NMFk parameters, N, is equal to the
number of components in the W and H matrices minus the number of
observations points, because we impose the constraint ∑ == W 1j

k
n j1 , for

each observation points, which reduces the number of adjustable
parameters. Thus, we have, N=nk+mk−n=k(n+m)−n, where k is
the number of sources, m is the number of wells and n is the number of
the observation points. L is the likelihood functions of the NMF solution
with given k, and we define it using the reconstruction error O(k) of the

NMF solutions: ln(L)=−(nm/2)ln(O(k)/nm) (nm is the total number of
observational data points; the product of the number of detectors by the
number of time slices).

The AIC is a standard measure of the relative quality of statistical
models, which takes into account both the likelihood function (in our
case determined by the reconstruction error) and the independent de-
grees of freedom needed to achieve this level of likelihood (the ele-
ments of the matrices W and H). Choosing the model that minimizes
AIC helps avoid over-fitting. In general, AIC decreases with increasing
the number of estimated sources k. Typically, AIC substantially drops
when k=ks. For k> ks, the AIC values commonly plateau and do not
exhibit substantial changes.

In general, both the average silhouette width S and AIC should es-
timate the same number of sources ks. If there is discrepancy, typically,
S-based estimate is smaller than the AIC-based estimate (this type of
situation is discussed in the results section below). In general, S-based
estimate of ks should be preferred because the solutions for k> ks are
potentially over fitting the data.

4. Results

4.1. Synthetic Analysis analysis

4.1.1. Example with two sources and three geochemical constituents
To illustrate our method, we apply the NMFk algorithm described

above to identify the source concentrations from a series of synthetic
data sets representing realistic scenarios generally consistent with real
world conditions.

First, we consider an example generated to represent two unknown
synthetic sources (groundwater types). The “true” unknown con-
centrations of three geochemical constituents (A, B & C) representing
the two synthetic sources are presented in Table 1. These sources are
mixed at each well using “true” unknown mixing coefficient show
shown in Table 2. These are the “true” unknown matrices W and H,
respectively, as presented in Eq. (2). These matrices are unknown; the
number of sources are also unknown. They are presented here just to
demonstrate the applicability of the method. The “true” matrices W and
H in Tables 1 and 2 are multiplied to estimate the “true” known con-
centrations V (Table 3) of three geochemical constituents (A, B & C) at
the five monitoring wells. Here, the measurement errors are assumed to
be zero.

Here and in the examples presented below, the source concentra-
tions and well mixing coefficients (Tables 1 and 2) are generated using
standard pseudo random pseudo-random number generation cap-
abilities provided in Julia; the random numbers have uniform dis-
tribution between 0 and 1. For convenience and without lost of gen-
erality, the source concentrations are scaled so that the maximum
concentration at the sources for each species is 1. The random mixing
coefficients are also scaled so that each row in Table 2 adds up to 1. As
discussed above, this requirement comes from the problem setup; the
groundwater concentrations at each well are expected to be defined by
mixing of all the sources.

We applied V in NMFk to estimate the number of sources and re-
construct the unknown source concentrations and mixing coefficients.
Based on Table 4, the number of source is two. This is estimated by the
behavior of the robustness and AIC criteria. The robustness is close to 1

Table 1
True and estimated concentrations of three geochemical constituents (A, B & C) re-
presenting two synthetic sources (S1 & S2).

Source True Estimated

A B C A B C
S1 0.932661 0.793833 1.0 0.927047 0.776642 1.07732
S2 1.0 1.0 0.0727242 0.996028 0.987838 0.127424
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for the cases of 1 and 2 sources; however, it drops substantially for 3
sources. This suggest that the solution for 3 sources is not stable and
non-unique and solution for 2 sources should be preferred. Similarly,
AIC shows a substantial drop between cases of 1 and 2 sources; this also
suggests that the solution with 2 sources should be selected. The same
conclusion can be also drawn here by the reconstruction quality.
Clearly the solution for 2 sources produces a much better fit of the data
than the solution for 1 source. The solution for 3 sources produces a
better match but based on parsimony principle (also captured by AIC)
but using much more model parameters (i.e., more degrees of freedom).
In this case, the 2 source solution has 16 model parameters
(5×2+2×3) while the 3 source solutions has 21 model parameters
(5×3+3×3). In all cases, there are only 15 observations (5×3).

The estimated unknown concentrations of the three geochemical
constituents (A, B & C) representing two synthetic sources are presented
in Table 1. The estimated unknown mixing coefficients of the identified
two sources in the five wells are shown in 2Table 2. As can be seen, the
algorithm accurately estimates the number of sources. It is also capable
of almost perfectly reproducing the observed concentrations (Table 3)
which is not surprising considering the large number of degrees of
freedom. The algorithm accurately captures the general pattern of
geochemical constituent concentrations in the original sources
(Table 1). It also accurately identifies the general pattern of re-
presentation (mixing) of the two original sources in the five monitoring
wells (Table 2).

The same synthetic problem was rerun 1,000 1000 times with dif-
ferent random concentrations. In all the 1000 cases, the algorithm
correctly identified the true number of sources. The same synthetic
problem was also rerun 1,000 1000 times adding random noise with
normal distribution (mean equal to zero and standard deviation equal
to 0.01) representing measurement errors. Again, the algorithm cor-
rectly identified the true number of sources all test cases.

4.1.2. Example with four sources and six geochemical constituents
As a second test, we consider an example generated to represent

four unknown synthetic sources (groundwater types) observed at 30
observation points. The synthetic observations V are presented in
Table 5. The concentration data is perturbed by adding random noise
with normal distribution (mean equal to zero and standard deviation
equal to 0.01) representing measurement errors. We applied V in NMFk
to estimate the number of sources.

Based on Table 6, the number of source is four. This is estimated by
the behavior of the average silhouette width S and AIC criteria as a
function of the number of sources k. The average silhouette width S is
close to 1 for the cases when k ≤ 4. S drops slightly for k=4 but it is
still close to 1. Substantial drop for S occurs for k>4 This suggest that
the solution for more than 4 sources are non-unique and depends
strongly on the random initial guesses for the unknown matrix com-
ponents W and H.

AIC shows a substantial drop between cases of 3 and 4 sources; this
suggests that the solution with 4 sources should be selected.

In this case, the same conclusion can be also drawn here by the
reconstruction quality O. Clearly, the solution for 4 sources produces
much better fit of the data than the solution for 3 sources. The solution
for 5 sources also produces a good match but based on parsimony
principle (also captured by AIC), it should be rejected because it is using

Table 2
True and estimated mixing coefficients of the two sources at five monitoring wells.

Well True Estimated

S1 S2 S1 S2
W1 0.901005 0.0989955 0.821967 0.178033
W2 0.734414 0.265586 0.659343 0.340657
W3 0.33299 0.66701 0.267476 0.732524
W4 0.466407 0.533593 0.397717 0.602283
W5 0.468169 0.531831 0.399436 0.600564

Table 3
True and estimated concentrations of the three geochemical constituents (A, B & C) ob-
served at five observation points.

Well True Estimated

A B C A B C
W1 0.939328 0.814242 0.908204 0.939328 0.814242 0.908204
W2 0.950546 0.848588 0.753729 0.950546 0.848588 0.753729
W3 0.977577 0.931348 0.381497 0.977577 0.931348 0.381497
W4 0.968593 0.903842 0.505212 0.968593 0.903842 0.505212
W5 0.968474 0.903479 0.506846 0.968474 0.903479 0.506846

Table 4
NMFk results for the problem presented in Table 3; the reconstruction quality O, sil-
houette width S, and AIC are estimated for number of sources k=1,2,3.

k O S AIC

1 0.1934462 1 11.45456
2 8.345958×10−16 0.9843997 −235.0658
3 2.505855×10−16 0.5936544 −242.4891

Table 5
Concentrations of six geochemical constituents observed at 30 observation points with
noise.

Well A B C D E F

W1 0.824159 0.770184 0.650546 0.672767 0.328136 0.755944
W2 0.721702 0.657699 0.659243 0.519665 0.127078 0.846111
W3 0.806203 0.620875 0.560077 0.658265 0.465434 0.705513
W4 0.846015 0.867051 0.657893 0.690346 0.49869 0.714246
W5 0.717991 0.797765 0.752877 0.484986 0.124759 0.866724
W6 0.870077 0.694686 0.577234 0.757505 0.538225 0.67329
W7 0.705147 0.633675 0.632464 0.526834 0.200167 0.812269
W8 0.837582 0.734872 0.592473 0.707935 0.351192 0.735757
W9 0.839538 0.727734 0.557825 0.759988 0.269487 0.727261
W10 0.837105 0.599062 0.488185 0.755697 0.464891 0.686943
W11 0.823122 0.775698 0.615535 0.711279 0.369447 0.728862
W12 0.70415 0.820778 0.75013 0.427328 0.177106 0.866145
W13 0.816797 0.911729 0.742964 0.614281 0.10748 0.828933
W14 0.774421 0.828243 0.693439 0.619605 0.181521 0.824042
W15 0.682291 0.690584 0.706534 0.451311 0.121616 0.873707
W16 0.891054 0.785168 0.567378 0.847566 0.426966 0.658821
W17 0.818681 0.892126 0.714567 0.662251 0.30273 0.783264
W18 0.849113 0.939263 0.710556 0.689737 0.383933 0.748372
W19 0.824445 0.83857 0.673778 0.664912 0.411412 0.749026
W20 0.92851 0.72809 0.539854 0.829349 0.750985 0.597475
W21 0.809177 0.776766 0.640878 0.669215 0.301763 0.764136
W22 0.748145 0.724945 0.683463 0.506134 0.112246 0.84714
W23 0.67255 0.971162 0.950029 0.301939 0.088057 0.96026
W24 0.802038 0.740081 0.582657 0.742845 0.157864 0.766039
W25 0.796033 0.795485 0.646577 0.640355 0.412495 0.750769
W26 0.749082 0.479525 0.495895 0.630318 0.171125 0.78558
W27 0.793644 0.692601 0.603123 0.68066 0.25344 0.758854
W28 0.776949 0.783003 0.652028 0.627913 0.258182 0.775171
W29 0.817962 0.826797 0.661437 0.65274 0.448026 0.737439
W30 0.821272 0.726155 0.589883 0.684018 0.371474 0.723059

Table 6
NMFk results for the problem presented in Table 5; the reconstruction quality O, sil-
houette width S, and AIC are estimated for number of sources k=1,…,6.

k O S AIC

1 1.97693 1 −800.0541
2 0.5999861 0.9999628 −942.685
3 0.1606472 0.9998313 −1107.87
4 0.007977784 0.9499047 −1576.329
5 0.00354382 −0.2686716 −1650.391
6 0.001058438 −0.5015211 −1795.905
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much more model adjustable parameters. In this case, the 4 source
NMFk solution has 114 adjustable parameters (30×4+4×6−30)
while the 5 source solution has 150 parameters (30×5+5×6−30).
In all cases, there are only 180 observations (30×6).

This synthetic problem was rerun 1,000 1000 times with different
random concentrations. All the runs are performed adding random
noise with normal distribution (mean equal to zero and standard de-
viation equal to 0.01). In 912 cases, the algorithm correctly identified
the true number of sources.

4.2. Site Analysis analysis

NMFk is applied to analyze and deconstruct the groundwater geo-
chemistry observed in the regional aquifer beneath the Los Alamos
National Laboratory (LANL) site for characterization of contaminant
sources. LANL is a research facility operated by the U.S. Department of
Energy in north-central New Mexico. LANL is currently investigating a
chromium (Cr6+) plume in the regional aquifer beneath Sandia and
Mortandad Canyons (Fig. 1) to ensure contaminants do not threaten
human health or the environment. The chromium contamination is
caused by infiltration of liquid effluents released from an electric power
plant. A comprehensive investigation of this plume has been ongoing
since 2005 (Vesselinov et al., 2015, 2013). The site conceptual model
describing the physical and biogeochemical processes controlling the
movement of groundwater and contaminants in the environment is
presented in detail in LANL (2012), and supported by multiples lines of
evidence. In general, the site conceptual model that was proposed in
LANL (2012) is still consistent with the recently collected data. The
establishment and the ongoing testing of the current conceptual model
involved a series of field, laboratory and modeling analyses (LANL,
2012; Vesselinov et al., 2015, 2013).

The contaminant source mass and the release history on the ground

surface is highly uncertain. Also uncertain are the volume, transients
and location of the infiltrating water carrying the contamination in the
subsurface. The water and contaminants infiltrated through 300 m
thick vadose zone which includes several perching horizons before
reaching the regional aquifer water table. The hydraulic properties of
the regional aquifer are highly heterogeneous. The shape of the regional
water-table is impacted by these heterogeneities as well as by zones of
infiltration from the vadose zone. Furthermore, migration of the con-
taminants in the subsurface is also influenced by effluent and water
discharges in two neighboring canyons: Mortandad and Los Alamos
(Fig. 1). Past Mortandad Canyon effluent releases contain nitrate
(NO−

3 ), and tritium (3H). Past effluent releases in Los Alamos Canyon
are characterized by elevated 3H concentrations. Some of these Mor-
tandad and Los Alamos Canyon tracers were collocated with con-
taminant released in Sandia Canyon and detected in the regional
aquifer.

As a result, the geochemistry of the regional aquifer groundwater is
expected to be representative of several commingled groundwater types
with different geochemical signatures. The groundwater types can be
related to different infiltration flowpaths as wells as background aquifer
groundwater coming upgradient from the site.

A subset of the data collected at the site is applied for the NMFk
analysis and is presented in Table 7. The NMFk results are presented in
Table 8. The NMFk analysis suggest 5 original groundwater sources
with different geochemical composition are mixed in the aquifer. This
estimate is based on the silhouette width S values. Note that S ≈ 1 for k
≤ 5. The AIC values potentially suggest existence of 7 sources. How-
ever, the solutions for 6 and 7 sources are potentially over-fitting the
data.

Some of the estimated 5 sources (groundwater types) are associated
with contaminant releases (Table 9). Based on Table 9, the fifth source,
s5, has the highest 3H concentrations; the other geochemical

Fig. 1. LANL site map showing location of the monitoring wells.
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components are elevated as well. This source might be associated with
infiltration along Los Alamos Canyon. The fourth source s4 has high
Cr6+ values and might be associated with infiltration along Sandia
Canyon. The second and third sources (groundwater types) are asso-
ciated with elevated SO −

4
2 / NO−

3 and Cl− / SO −
4
2 concentrations, re-

spectively; their origin is unknown; they might be a result of geo-
chemical processes occurring during groundwater infiltration. The fifth
source (groundwater type) represents background concentrations.

Table 10 shows the mixing coefficient of the 5 groundwater types
(contaminant sources) for each observation well. Note that the mixing
coefficients for each well add up to 1. The background groundwater
type is predominantly detected at the upgradient wells (e.g., R-14#1, R-
1, R-33) as well as in the deep screens of some of the (#2) of the two-
screen wells. The fourth and fifth source sources are detected at R-42
and R-28 which are located at the centroid of the existing chromium
plume in the regional aquifer. The third source (groundwater type) is
predominantly detected in R-28, but, interestingly, it is not observed in
R-42. The second source (groundwater type) is predominantly detected

in R-43#1 and R-11 which are located in the northern portion of the
site (Fig. 1).

The source concentrations estimated by NMFk are somewhat con-
sistent with more complicated inverse analyses using numerical models
applied to solve this problem (LANL, 2012; Vesselinov et al., 2015,
2013). In the future, the NMFk results will be applied as input to inverse
analyses of site numerical models. In this way, instead of calibrating
against all the geochemical data, the numerical models would be cali-
brated against the NMFk predicted geochemical mixtures.

5. Conclusions

Our analyses demonstrate the applicability of our NMFk approach
for identification of contaminant sources based on a Non-negative
Matrix Factorization (NMF) technique combined with a custom semi-
supervised clustering. The NMFk approach was originally presented by
Alexandrov and Vesselinov (2014). However, important changes and
extensions were made in NMFk to develop an algorithm applicable for
blind source identification based on geochemical data. The analyses
required application of non-convex nonlinear optimization algorithm.
The classical multiplicative NMF optimization algorithm (Lee and
Seung, 1999) is not applicable in this case. Furthermore, additional
constraints are imposed on the NMFk solutions. The original method
relied only non-negativity constraints. Here the NMFk algorithm in-
cludes constraints on one of the factorized matrices (the mixing matrix
in Eqs. (2) and 5) where the mixture coefficients add up to 1 for each
observation point.

The inverse problem solved in the NMFk analysis is under-de-
termined (ill-posed). To address this, the NMFk algorithm thoroughly
explores the plausible inverse solutions, and seeks to narrow the set of
possible solutions by estimating the optimal number of contaminant
source signals needed to robustly and accurately reconstruct the ob-
served data. This allows us to estimate the number of contaminant
sources.

In the synthetic tests, we generated datasets representing unknown
contaminant sources detected as a set of mixed signals (groundwater
types/contamination sources) at a series monitoring wells (detectors/
sensors). Using only the synthetic dataset representing the observations
at the monitoring wells, we correctly identified the number of con-
taminant sources. We also applied NMFk on real-world dataset related
to the LANL chromium contamination site. The results of this analysis
are consistent with previous data and model analyses (LANL, 2012;
Vesselinov et al., 2015, 2013).

NMFk allows the contaminant fields observed at a series of the

Table 7
Concentrations of six geochemical constituents observed at 18 monitoring wells (ob-
servation points) at the LANL site; the number after # defines the screen number for two-
screen wells; #1 and #2 are the shallow and deep screens, respectively.

Well Cr6+ Br− Cl− 3H NO−
3 SO −

4
2

R-14#1 5.72 0.2 1.64182 0.196983 0.328417 1.91
R-1 5.74846 0.186167 1.87167 0.0901333 0.349923 2.40083
R-33#1 5.61786 0.2 2.27143 0.460143 0.589214 3.25357
R-33#2 6.25786 0.2 1.96929 0.23756 0.341214 2.39929
R-15 12.1439 0.116743 4.19294 29.6705 2.20824 6.52529
R-62 150.571 0.120293 7.95461 7.67933 1.19193 13.8543
R-61#1 14.4147 0.184533 3.136 23.213 1.6878 5.15267
R-43#1 54.2395 0.120368 6.39273 0.0723 5.44318 12.93
R-43#2 5.49273 0.146953 4.00864 0.24958 1.43264 5.18409
R-42 899.682 0.241824 40.44 234.059 5.54735 75.675
R-28 389.684 0.267933 34.0263 190.348 3.87 49.2263
R-50#1 90.3083 0.148145 7.31739 19.9802 1.49742 11.0457
R-50#2 4.89545 0.2 2.14435 1.24693 0.544261 2.82478
R-11 21.8478 0.11732 5.02652 4.70076 5.35304 11.9074
R-44#1 15.2316 0.2 2.28842 1.11807 0.999684 3.78421
R-44#2 6.07895 0.2 2.28421 0.21406 0.630342 3.33789
R-45#1 22.8647 0.146993 4.03647 2.36947 2.39859 6.22588
R-45#2 12.2253 0.19115 3.46412 1.4288 0.667412 4.59059

Table 8
NMFk results for the LANL site problem presented in Table 7; the reconstruction quality
O, silhouette width S, and AIC are estimated for number of sources k=1,…,6.

k O S AIC

1 918514 1 989.2252
2 9054.305 1 538.3174
3 202.5992 0.9972838 175.9426
4 25.65629 0.9998287 0.7669993
5 0.8233524 0.9990816 −322.6622
6 0.009291258 0.7588948 −758.9678
7 1.054021e−14 −0.3827634 −3681.497
8 1.312425e−14 −0.2217047 −3609.816

Table 9
NMFk estimated concentrations of the 5 groundwater types (contaminant sources) mixed
at each observation well.

Species s1 s2 s3 s4 s5

Cr6+ 0.651768 4.4077 5.26019 1603.81 144.144
Br− 0.190179 0.0748653 0.166503 0.0159012 0.650596
Cl− 0.233575 1.49177 20.7714 34.2884 66.4602
3H 0.0241554 0.0268574 0.0693364 0.569992 723.896
NO−

3 0.0661616 7.87773 0.368709 2.28238 11.4631

SO −
4
2 0.390592 10.1767 18.3248 90.7997 80.515

Table 10
NMFk estimated mixing coefficient of the 5 groundwater types (contaminant sources) for
each observation well at LANL site; the values along each row add up to 1.

Wells s1 s2 s3 s4 s5

R-14#1 0.91462 0.0227863 0.0594461 0.00291517 0.000232176
R-1 0.884697 0.038273 0.0740757 0.00286992 8.46965e−5
R-33#1 0.82384 0.0795862 0.0933861 0.00259239 0.00059573
R-33#2 0.887723 0.0321049 0.0767092 0.00317564 0.000287629
R-15 0.716003 0.200056 0.0400746 0.00291741 0.0409486
R-62 0.612985 0.0997541 0.184955 0.0918114 0.0104945
R-61#1 0.795433 0.149787 0.0174367 0.00531572 0.0320281
R-43#1 0.123962 0.644323 0.200355 0.0313342 2.57275e−5
R-43#2 0.666539 0.162999 0.168036 0.00212731 0.000298321
R-42 0.0344507 0.0804616 0.030571 0.53161 0.322907
R-28 0.0569058 0.0266741 0.435852 0.217835 0.262733
R-50#1 0.660187 0.102806 0.156722 0.0527676 0.0275169
R-50#2 0.853376 0.0607406 0.0820812 0.00211916 0.00168277
R-11 0.121542 0.697494 0.163975 0.0105457 0.00644303
R-44#1 0.799138 0.11571 0.0751787 0.0084736 0.00150003
R-44#2 0.816575 0.0858645 0.0944118 0.00289291 0.000255517
R-45#1 0.609305 0.247331 0.12753 0.0126154 0.00321839
R-45#2 0.767181 0.0841347 0.140307 0.00644903 0.00192798
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detectors to be “unmixed” into a series of independent plumes with
independent contamination sources. This information can be applied to
guide the conceptualization of the site conditions and the design of
numerical models that are set up to represent these conditions. In some
cases, decoupled model analyses might be applied to independently
analyze the groundwater transport of each contaminant source which
can be computationally more efficient. NMFk results coupled with
modeling analysis can yield information needed for site contaminant
fate and transport predictions, hazard and risk assessments, and con-
taminant remediation.

It is important to note that the presented NMF analyses are fol-
lowing the classical BSS formulation assuming a linear mixing problem
(Eq. (2)). However, since the NMF problem is solved using nonlinear
minimization procedure as discussed in Section 2, the BSS problem can
be expanded to account for nonlinear mixing and geochemical pro-
cesses occurring in the subsurface. This will increase the number of
unknowns in Eq. (2) as well as the computational complexity but as
long as data are available to represent nonlinear mixing process, the
BSS problem can be solved. We plan to extend our analyses to account
for nonlinear mixing and geochemical processes in the future.

The presented analyses are focusing on two-dimensional (matrix)
data where the data define the concentrations of a series of geochemical
species as measure at a series of monitoring wells. The analyses cur-
rently ignore information about the well spatial coordinates. The in-
corporation of the well locations in the analyses will increase the di-
mensionality of the data (e.g., the problem can be five dimensional if
the species concentrations depend on three spatial coordinates and
time). This will require application of tensor-based factorization
methods (Cichocki et al., 2009). However, currently, there are no
tensor-based methods that can be applied to solve the multi-dimen-
sional geochemical mixing problems and we are currently working to
address this issue.

The possible applications of the NMFk approach are not limited to
groundwater contamination problems. For example, NMFk can readily
be be used to identify contaminant sources based on soil and air pol-
lution data. NMFk can be applied to analyze any mixtures of in-
gredients. In this case, our constrained NMFk procedure can be applied
to identify the ingredients of the sources that are mixed to produce
observed mixtures.
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